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Abstract—Recent evaluation [2], [13] of representative background subtraction techniques demonstrated that there are still

considerable challenges facing these methods. Challenges in realistic environment include illumination change causing complex

intensity variation, background motions (trees, waves, etc.) whose magnitude can be greater than those of the foreground, poor image

quality under low light, camouflage, etc. Existing methods often handle only part of these challenges; we address all these challenges

in a unified framework which makes little specific assumption of the background. We regard the observed image sequence as being

made up of the sum of a low-rank background matrix and a sparse outlier matrix and solve the decomposition using the Robust

Principal Component Analysis method. Our contribution lies in dynamically estimating the support of the foreground regions via a

motion saliency estimation step, so as to impose spatial coherence on these regions. Unlike smoothness constraint such as MRF, our

method is able to obtain crisply defined foreground regions, and in general, handles large dynamic background motion much better.

Furthermore, we also introduce an image alignment step to handle camera jitter. Extensive experiments on benchmark and additional

challenging data sets demonstrate that our method works effectively on a wide range of complex scenarios, resulting in best

performance that significantly outperforms many state-of-the-art approaches.

Index Terms—Block-sparse RPCA, salient motion, dynamic background, camera jitter

Ç

1 INTRODUCTION

OUR society has invested massively in the collection and
processing of data of all kinds, on scales unimaginable

until recently. The web also has an enormous collection of
live cameras that capture images of roads, beaches, cities,
buildings, and forests. Images from these cameras are a vast
untapped resource of information about the world and the
way it changes over time. For example, they might be used
for surveying animal populations, monitoring coastal ero-
sion, and security. Change detection will be a key compo-
nent of these data processing activities. Despite much effort
in this direction, a recent evaluation of major techniques for
video surveillance [2] showed that hardly any approach can
reach more than 50 percent precision at recall level higher
than 90 percent. Designing an algorithm that is robust under
a wide variety of scenes encountered in complex real-life
applications remains an open problem.

For cameras that are mounted and are more or less
stationary, background subtraction is a major class of
technique used to detect changes or moving objects.
Essentially, in such methods, video frames are compared
with a background model; changes are then identified as
the foreground. Various methods have been used to
model the background, ranging from simple thresholding
[32] to various forms of parametric approach such as a
single Gaussian [6], [16] or a mixture of Gaussians [28],
and extensions of such Gaussian mixture model [10], [14],

[17]. Without attempting to be exhaustive, other methods
include kernel density estimate (KDE) using either Gauss-
ian kernels [9], [27], variable-bandwidth kernels [22] or
step kernels [1], [38], histogram [36], neural networks
[20], Markov random fields (MRF) models [26], block cor-
relation [21], and codebook model [18]. For cameras that
are moving or experiencing significant jitter, a preprocess-
ing step of image alignment is needed. For a more
detailed discussion of some of these techniques, readers
can refer to a recent survey [3].

The reason why most of these methods fail to work well
in realistic complex situation is that these methods often
make overly restrictive assumptions about the background.
In reality, the background itself can have complex changes.
It might contain motion such as those caused by ripples on
a lake, or swaying vegetation, which can cause false alarms.
The motion of these backgrounds can be larger than that of
the foreground. There could be sudden illumination change
caused by cloud cover, causing complex intensity and
shadow variation, or more gradual illumination change
caused by the movement of the sun. During dawn and dusk
hours, the image quality can be poor due to the low light
condition. In view of these complex factors, it is very diffi-
cult to model the background well. Training-based methods
also assume the availability of training clips with no fore-
ground motions.

In this paper, we handle all these challenges by making
very little specific assumptions about the background. The
only assumption made about the background is that any
variation in its appearance (whether caused by intensity
change, or non-stationary background) is highly constrained
and can be captured by the low rank condition of a suitably
formulated matrix. In its simplest form, we say that a m� n
matrix MM composed of the observed vectorized image
frames (i.e., m ¼ number of rows� number of columns; n ¼
number of frames) can be decomposed into a low-rank
matrix LL representing the background, and a sparse matrix
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SS consisting of the moving objects treated as sparse outliers.
Detecting the moving objects amounts to solving the follow-
ing problem:

min
LL; SS

rankðLLÞ þ � SSj jj j0; s.t. MM ¼ LLþ SS; (1)

where � is a regularizing parameter. This is also known as
the Robust Principal Component Analysis (RPCA) prob-
lem [4]. Recently, there has been a spate of methods pro-
posing the use of such low-rank constraint [11], [34], [35].
In the next section, we will first discuss the inadequacy of
such formulation, and then introduce the necessary steps
that will lead to substantially better results than other
RPCA related formulations and other state-of-the-art back-
ground subtraction techniques, as has been shown in the
conference version of our work [12]. In this paper, we also
extend our work to handle more complex foreground
motion and camera jitter, and we perform a thorough eval-
uation of the proposed method on both the SABS [2] and
the CDnet [13] data sets.

2 BACKGROUND AND SYSTEM OVERVIEW

In the earliest models using low rank matrix to represent
background [4], [7], no prior knowledge on the spatial dis-
tribution of outliers was considered. In real videos, the fore-
ground objects are usually spatially coherent clusters. Thus,
contiguous regions should be preferably detected. Such
prior has been incorporated through the MRF prior [37];
however the result of imposing such smoothness constraint
(even with the so-called discontinuity preserving prior such
as those based on Potts model) is that the foreground region
tends to be over-smoothed. For instance, the detailed silhou-
ette of the hands and legs of a moving person is usually sac-
rificed in favor of a more compact blob. Our idea is related
to the so-called block-sparsity or joint-sparsity measures to
incorporate spatial prior. However, these works [8], [29]
typically assume that the block structure is known.
Rosenblum et al.’s [25] method does not require prior
knowledge on the block size and block location, which are
instead detected by iteratively alternating between updat-
ing the block structure of the dictionary and updating the
dictionary atoms to better fit the data. Nevertheless, both
the number of blocks and the maximal block size are
assumed to be known. In [15], [24], the sparsity structure is
estimated automatically. However, in [15], parameter tun-
ing is required to control the balance between the sparsity
prior and the group clustering prior for different cases, and
both these algorithms share the same limitation that training
sequences composed of clean background are required. In
contrast, our method estimates the sparsity structure auto-
matically without a separate training phase.

Before describing how to automatically detect the
blocks containing moving objects, we want to discuss the
issue of scale. The scale issue is present in the preceding
RPCA related formulation because there is no one value
of �, the regularizing parameter, that can handle fore-
ground objects of all kind of sizes (� controls the amount
of outliers in the RPCA decomposition, and thus is
related to the scale issue). This issue is in fact a peren-
nial challenge in many segmentation problems. As an

example, in the well-known Normalized Cut algorithm,
there often cannot be a single correct segmentation of an
image unless it has a single prominent object. Let us
take an example of the scene shown in Fig. 5, in which
the tree is much larger in size than the human, and its
apparent image motion is also larger due to its proximity
to the camera. For such a scene with prominent objects
appearing at significantly different scales, having a single
global parameter for segmenting the scene (whether in
the sense of image segmentation, or in the present case,
motion segmentation) is not even meaningful. While the
block-sparsity approach to a certain extent can relieve
this scale problem (by having blocks of different sizes),
it does not fundamentally remove the problem, espe-
cially when there is a lot of large background motion.

The root of this problem lies in that the precise definition
of the foreground target is intricately linked with the object
of interest in the scene (i.e., one’s purpose) and can be well
defined only if the object of interest or its salient characteris-
tics is known to us. However, knowing about the object of
interest even before segmenting the scene seems to make
the problem as one of many chicken-egg problems in com-
puter vision, as we usually need to segment the scene to rec-
ognize the objects in it. So, how can we identify an object
and its probable size even before segmenting it?

Clearly this must involve a feedback process, either
implicitly or explicitly. In this paper, we put forth a hierar-
chical two-pass process to solve the aforementioned prob-
lems. The first-pass RPCA rapidly identifies the likely
regions of foreground in a sub-sampled image. A simple
motion consistency scheme is then used to measure the
motion saliency of these foreground regions. Then in the
second pass, a block-sparse RPCA imposes the spatial
coherence of foreground objects in the outlier matrix SS,
with the � value set according to the motion saliency esti-
mated in the first pass. Taking into account the motion
saliency and the block-sparse structure of the outlier matrix
SS makes the foreground detection robust against the clutter
caused by the background motion, and largely invariant to
object size, allowing us to return crisply defined foreground
regions. As opposed to formulating the whole problem into
a single optimization function (as in the case of [15], [24]),
we favor the explicit modeling of this feedback process. Not
only this achieves greater modularity of different processes
and ensures convergence, it also allows greater flexibility in
the design of the motion saliency measure (other domain
specific constraints can be readily accommodated too). This
gives us a greater advantage when decomposing scenes
with complex foreground and background motion, as can
be seen from the experimental results later. Note that our
strategy is also distinct from recent region segmentation
method [5] which uses mid-level Gestalt properties such as
convexity to rank multiple region hypothesis produced by
different spatial scales. We use the estimated motion
saliency to set a more fine-tuned � value in each block in the
second pass, rather than just using it to rank hypothesis.
Another merit of having a two-pass process is that we can
incorporate in an integral manner an image alignment step
similar to RASL [23] in the first pass. Since the first pass is
carried out over a sub-sampled image, the amount of com-
putation is significantly reduced.
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We test our algorithm on background with a wide range
of dynamic texture motions with varying magnitude, and
also on different sizes of foreground objects. Other challeng-
ing conditions as categorized in [2] and [13] (illumination
change, high noise in dim environment, artifacts in thermal
images, intermittent motions, etc.) are also tested with the
sequences provided therein. In all cases other than those
categories which we do not explicitly tackle (such as shad-
ows), we are able to achieve accurate detection and clean
delineation of targets. Our algorithm emerges as the overall
winner, with consistent performance across all categories
that significantly improves over those achieved by most
state-of-the-art techniques, including DPGMM [14] which is
just released at the time of writing and currently the best
technique according to the evaluation criteria on CDnet.

3 OUR ALGORITHM

3.1 First-Pass RPCA

As discussed in the preceding section, our proposed
approach is based on a two-pass RPCA process. First we
make a rapid weak identification in the form of rough
region(s) of interest by performing a first-pass RPCA on a
scaled-down low resolution sequence (sub-sampled spa-
tially at a four to one ratio). This step is based on a simple
convex relaxation of equation (1):

min
LL;SS

LLj jj j� þ � SSj jj j1 s.t. MM ¼ LLþ SS; (2)

where j LLjj j� is the nuclear norm of matrix LL, the sum of its
singular values, and � set at a value that ensures no genuine
foreground regions will be missed. The inexact augmented
Lagrange multiplier (ALM) method [19] is used to solve
this problem. We find that the recommended value of
� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞp

(where m� n are the dimensions of MM)
is adequate to identify all foreground regions, including
possibly many background regions.

As we find in our experiments later, while the low-rank
formulation of the background matrix is generally effective
in absorbing many natural variations in the background
(such as illumination change), the full power of the RPCA
framework to achieve accurate decomposition can only be
realized if we have a more subtle mechanism to handle the

aforementioned issue of scale and to capture the salient
aspect of the expected foreground motions. As it is, not only
significant number of non-stationary background points are
being deposited in the outlier matrix, faint trace of the fore-
ground motion is often also retained in the background
matrix (see the ghostly presence of the walking person in
the inset of Fig. 5). It is evident that there is no single � that
can achieve a clean separation of the foreground and back-
ground regions.

Referring to the middle figure of Fig. 1, all those non-
white pixels are the outliers estimated via the first-pass
RPCA. These outliers typically comprise both background
and foreground objects. Before we discuss how we iden-
tify those blocks with genuine outliers in Section 3.3, we
have to first discuss the necessary alignment step if cam-
era jitter is an issue.

3.2 First Pass with Image Alignment

Camera jitters caused by strong wind, passing vehicles
and so on can severely impair the performance of our
RPCA based algorithm if it is not properly compensated
for. Following the work of RASL [23], we can incorporate
a similar alignment process seamlessly into the first pass
presented above.

Suppose we are given n images I01 ; . . . I
0
n of some scene

captured by a jittering camera. We can model the alignment
process as a 2D parametric transform t1; . . . ; tn 2 R2 acting
on the two-dimensional domain of the images respectively,
such that the i-th frame after alignment is denoted as I0i � ti.
If the sequence is well-aligned, it should exhibit good low-
rank structure, up to some sparse outliers. We therefore
search for a set of transformations t ¼ t1; . . . ; tnf g such that
after the sparse outliers are accounted for, the rank of the
transformed sequence should be as small as possible. Thus,
instead of Equation (2), we now have Equation (3) where, to
facilitate description, we have used DD � t as shorthand for
½vecðI01 � t1Þj . . . jvecðI0n � tnÞ� 2 Rm�n and vec is an operator
that stacks an image as a vector.

min
LL;SS;t

LLj jj j� þ � SSj jj j1 s.t. DD � t ¼ LLþ SS: (3)

The main difficulty in solving (3) is the nonlinearity of
the constraint DD � t ¼ LLþ SS. Following [23], we approxi-
mate this constraint by linearizing around the current
estimate of t. That is, we have DD � ðt þ~tÞ � DD � t þPn

i¼1 Ji ~ ti�
T
i , where Ji ¼: @

@z
vecðI0i � zÞjz¼ti

is the Jacobian
of the i-th image with respect to the transformation

Fig. 1. Middle: Initial outlier detection via a first-pass RPCA on a sub-
sampled sequence. Each grid in this figure corresponds to a 4� 4 block
in the full resolution image. Right: The remaining computation is carried
out in original resolution; gray pixels represent background objects per-
forming non-salient motion; those color pixels denote foreground objects
with salient motions.

Fig. 2. Trajectory PsPe partitioned according to two criteria: when the
curve changes direction in x (left) and in y (right). The points Pxi (left)
and Pyi (right) represent the partition points.

GAO ET AL.: BLOCK-SPARSE RPCA FOR SALIENT MOTION DETECTION 1977



parameters ti and �if g denotes the standard basis for Rn.
This leads to a convex optimization problem in the
unknowns LL, SS,~t:

min
LL;SS;~t

LLj jj j� þ � SSj jj j1 s.t. DD � t þ
Xn
i¼1

Ji~ti�
T
i ¼ LLþ SS:

(4)

To find the (probably local) minimum, we repeatedly lin-
earize about the current estimate of t and solve a sequence
of convex programs of the form of (4) until convergence.

This alignment step could be potentially costly due to its
iterative linearizations. However, having the alignment in
the first pass results in significant savings since we are only
dealing with a sub-sampled image (60� 80 in our experi-
ments); down-sampling also facilitates the convergence of
algorithm and avoids being trapped in a local minimum. In
this work, we find that a simple translation model for the
transformation t is good enough to handle those camera jit-
ters encountered in our experimental sequences. Our first
pass RPCA operation is summarized as Algorithm 1.

3.3 Motion Saliency Estimation

The likelihood of a block generated by the first pass contain-
ing genuine foreground motions is measured by the
saliency of its motion, based on a method modified from
[33]. The basic idea is to track all pixels within the blocks
detected in the first pass RPCA via dense optical flow. Only
those trajectories whose directions are consistent, or at least
consistent for a certain minimum amount of duration, are
deemed to be salient and retained as likely candidates of
foreground motions. A simple block merging step is then
carried out to group those spatially connected 4� 4 salient
blocks into a larger rectangular block that encompasses all
of them (see Fig. 3), forming the block structure for the sec-
ond-pass RPCA process.

Our motion saliency estimation method differs from that
of Wixson [33] in the following ways. Instead of using the
KLT tracker, we applied the “Classic þ NL” algorithm [30]

to obtain dense optical flow, from which we can assess the
motion consistency of an entire region rather than just a set
of sparse features. It also suits our purpose that this algo-
rithm is robust to ambient illumination change. Another dif-
ference with [33] is that we attempt to track a point for as
long as possible, and compute the motion consistency based
on the entire trajectory, rather than just on a window of
about ten frames. This is important for handling “periodic”
background motion whose period might be longer than
10 frames (for the details of the tracking procedure, please
refer to the Appendix). Lastly, and most importantly, our
definition of what constitutes salient motion also differs
from those of [33] as we want to capture a bigger class of
foreground motions which are not necessarily always mov-
ing in one direction (more of this in the next paragraph).
Note that the tracking is done only at the pixel level. There
is no tracking at the block level; thus, the saliency of the
block is entirely dependent on the saliency of constituent
trajectories passing through the block at that instant.

We now describe the criteria for motion saliency.
Denoting the successive 2D image position of points
along the lth trajectory from the jlth frame to the klth
frame (jl; kl 2 ½1; n�) as Xl;jl ; Xl;jlþ1; . . . Xl;kl , we first
remove those trajectories that are too short, specifically,
kl � jl 	 10. We then check for the following two condi-
tions. To fulfil Condition 1, we require that the time spent
moving in one direction accounts for more than 80 per-
cent of the entire trajectory (this is similar to Wixson’s
definition of motion consistency [33]).1 If this condition is
met, the saliency measure SM is defined to be propor-
tional to the displacement traveled by that pixel. This def-
inition of saliency measure serves to further enhance the
detectability of those foreground motion moving in a
slow but consistent manner for a sustained period of
time. In general, slow motion causes a smaller rank
change to the matrix L and is more liable to be missed if
its associated � is not suitably compensated. Conversely,
inconsistent motions of the background that result in
small local displacement will be further discounted if

Fig. 3. Foreground regions with different motion saliency measure
SMA; SMB; SMC . Here, each grid cell is not a pixel but a 4� 4 block.

1. See Algorithm 2 for details. Note that we just determine the
motion consistency along the horizontal and vertical directions of
movement for simplicity. The reason is that it could be quite difficult to
determine the main direction of movement sometimes, such as in the
case of evasive motions, where there might not be an overall direction
of move. The threshold of 0.01 pixel in step 6 is empirically determined
to remove those small spurious motion which could be generated by
the propagation mechanism in dense optical flow estimation algorithm.

1978 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 10, OCTOBER 2014



they are not already removed in the preceding pass. If the
first condition is not met, we nevertheless have Condi-
tion 2 that would also qualify a motion as salient. Among
the many foreground motions of interest, there might be
many of them with a significant amount of back and forth
movements (i.e., their motions are inconsistent); examples
include sport games, activities in confined spaces like
kitchen and playroom. What distinguishes them from
those quasi-periodic, inconsistent motions found in the
background (e.g., waves, foliage movements) is that the
duration of one such “back” or “forth” episode is nor-
mally longer. Here we declare that the trajectory motion
is salient if the aforementioned episode duration is longer
than three seconds. The saliency measures are then nor-
malized across the two conditions. Specifically, the
saliency measure of a trajectory obtained from condition
2 is adjusted to be between the minimum and the maxi-
mum of the SM values returned from Condition 1, the
exact amount determined by the relative episode duration
(see step 12 in Algorithm 2 for details). Finally, for block
i, we average the SM of all consistent trajectories with
SMl > 0 that pass through this block, and denote the
average as SMi.

3.4 Second-Pass RPCA

Based on the motion saliency computed in the preceding

step, trajectories marked as non-salient (SMl ¼ �1) in

Algorithm 2 are rejected. Now, with most of the non-

stationary background motions filtered off, we can afford

to lower � in the second-pass RPCA step. This would

ensure that all the changes caused by the foreground

motion will be entirely transferred to the outlier matrix

and not leave any ghostly presence in the background,

yet without incurring a large false positive rate. Thus,

for all blocks, we lower � by at least one order of magni-

tude compared to before. For all blocks i with salient

motion, we set �i ¼ 0:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞ

p SMmin

SMi
where the last factor

normalizes the SMi computed for this block with respect

to the minimum SM detected among all blocks contain-

ing salient motions. For blocks with no salient motion,

the �i’s are set to arbitrarily large values.
With the location and size of the likely outlier blocks esti-

mated, and each weighted by a different saliency measure
(Fig. 3), we are ready to carry out the second pass RPCA,

min
LL;SS

LLj jj j� þ
X
i

�i PP iðSSÞj jj jF s.t. MM ¼ LLþ SS; (5)

where the second term sums over all salient blocks, j 

jj jF is
the Frobenius norm of a matrix, and PPi is an operator that
unstacks each column of SS, and returns a matrix that repre-
sents block i. Essentially, this is the block-sparse version of
the conventional RPCA that favors spatially contiguous out-
liers. Equation (5) remains a convex optimization problem
and we solve it via the inexact ALM method. Interested
readers can refer to Lin et al. [19] for details of this method.
Briefly, the augmented Lagrangian function is defined as:

fðLL; SS; YY ;mÞ ¼ LLj jj j� þ
X
i

�i PP iðSSÞj jj jF

þ hY;M � L� SY;M � L� Si þ m

2
MM � LL� SSj jj j2F ;

(6)

where YY is the Lagrange multiplier, m is a positive scalar.
For this block-sparse RPCA, besides the usual soft-thresh-
olding operator S�i ½

� needed for the minimization with
respect to LL, we need the following block shrinkage (BS)
operator during the minimization with respect to SS:

BS�i ½GGi� ¼
GGij jj jF��i
GGij jj jF GGi if GGij jj jF > �i;

0 otherwise,

(
(7)

whereGGi is a matrix representing the block i, and �i ¼ �im
�1
k

is the corresponding threshold for this block. This shrinkage
operator taken over all blocks has been proven to be the
closed-form solution of the minimization with respect to SS
[31]. We summarize the algorithm in Algorithm 3.
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In Algorithm 3, we adopt the default values and condi-
tions recommended by [19]. Specifically, m0 ¼ 1:25=j MMjj j2,
r ¼ 1:6 and JðMMÞ ¼ maxðj MMjj j2; ��1 MMj jj j1Þ; whereby j 

jj j2
and j 

jj j1 are the spectral norm and the l1 matrix norm
respectively, and � is set at 0:1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞp

. The criteria for
convergence at step 2 is j MM � LLk � SSkjj jF= MMj jj jF < 10�7.

4 EXPERIMENTS AND ANALYSIS

We now perform experiments on both real and synthetic
sequences. We first make a qualitative assessment of vari-
ous methods by running them on a few specially chosen
sequences and presenting the results at a few particular
frames. We then make use of two recently released data
sets, SABS [2] and CDnet [13], for a thorough quantitative
assessment. We adopt the respective test criteria, which are
recall and precision in SABS, and F -measure in CDnet:

recall ¼ correctly classified foreground

foreground in ground truth
;

precision ¼ correctly classified foreground

pixels classified as foreground
;

F -measure ¼ 2
precision 
 recall
precisionþ recall

:

In all these comparisons, our algorithm is denoted by the
name 2-pass RPCA.

In both the qualitative assessment (Section 4.1) and the
SABS data set evaluation (Section 4.2.1), we compare our
algorithm with the three best performing methods evalu-
ated in [2], namely Zivkovic and van der Heijden [38],

Barnich and Droogenbroeck [1], Maddalena and Petrosino
[20], following the naming convention of Brutzer et al. [2].2

We augment the above list with the Kernel Density Estimate
method [9], as it is proposed specifically to deal with com-
plex dynamic scenes but has not been included in [2]. We
also compare our algorithm with two RPCA-based methods
as these methods are closest to ours in spirit: the PCP of [4],
and the DECOLOR of [37] which combines RPCA and
MRF, and is claimed to outperform PCP.3 The difference in
performance between PCP and ours is essentially the per-
formance gain brought about by the second pass with its
block-specific � setting based on motion saliency values. We
would also have liked to include in our comparison the
three best performing algorithms in [13]. One of them, the
DECOLOR algorithm, is already included in the above; in
the case of the other two, DPGMM [14] and SGMM-SOD
[10], we are prevented from a comprehensive evaluation
due to problem with codes availability and the requirement
that clips must have clean background for training. In the
case of DPGMM, the authors have kindly helped us run

Fig. 4. Detected foreground mask of ten sequences depicted in each column. See online version for details. One image frame of the sequence is
shown in the top row. Rows 2 to 8 depict the results of our 2-pass RPCAmethod, DECOLOR, PCP, KDE, Zivkovic, Maddalena, Barnich respectively.
For better visualization, we manually tagged the foreground in these frames and adopt such color coding scheme for the remainder of this paper:
white represents correctly detected foreground, red missing pixels, and blue false alarm.

2. These are known respectively as ViBe for Barnich, and SOBS for
Maddalena in the terminology of the second data set CDnet.

3. Note that for the PCP and our method, a thresholding step is
required to produce the final foreground mask, as many entries in SS
may contain vanishingly small values. To obtain a threshold, we first
identify the likely outlier locations. Those pixels whose corresponding
entries in SS have magnitudes less than half of the maximum entries in
SS are regarded as background. Next obtain the difference between MM
and LL at those tentatively identified background locations to estimate
the expected level of noise. Finally, we set the threshold at the mean of
the difference values plus three standard deviations of those difference
values and apply it to SS.
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some tests on clips where relatively clean background
is available, and the results are presented separately in
Section 4.1.

4.1 Qualitative Results

Fig. 4 shows the detected foregroundmasks on 10 real image
sequences, the first four from various public data sets used
in previous works, followed by four collected by us to dem-
onstrate specific issues addressed by our research and lastly,
two clips from the CDnet data set. Readers are advised to
refer to the online version for details in the figures.

The first two columns in Fig. 4 (people walking) are basi-
cally the baseline “easy” cases, where most algorithms per-
formed well, though with different degrees of details in the
foreground detected. The third column depicts a boat scene
with wave motion. This presents difficulties for many algo-
rithms; only ours and Maddalena performed relatively
well. Note that both the large speedboat in the middle and
the small speedboat in the far distance are detected by our
method, demonstrating its scale-invariance. The fourth and
the eighth columns depict rainy scenes where falling rain
causes “motion” in the background. Evaluated over the
two scenes, our method again produced the best results.
Maddalena is able to remove the background clutter very
well, but it tends to produce incomplete foreground object,
as well as missing small moving object (eighth column).

The fifth column depicts a swaying tree scene with vari-
ous small birds flying. The three best performing methods
in [2], namely, Zivkovic, Barnich, and Maddalena, all failed
to do well. Either they picked up the tree motions, or failed
to detect the birds. The KDE method that is introduced to
handle dynamic background also failed quite badly in this
sequence. The RPCA-based methods did better, with our
method correctly picking out all the birds as foreground
without any of the tree motion. These positive results also
showed that our motion saliency measure can handle zig-
zagging manoeuvers. Most such evasive manoeuvers have
an overall direction, that is, they result in a net movement in
certain directions, thus meeting the criteria for motion
saliency. The sixth column depicts the campus scene dis-
cussed before, with a large swaying tree and a walking per-
son. Due to its proximity to the camera, the magnitude of
the tree motion is larger than that of the human. As can be
seen from the results of our method, the human silhouette
is cleanly delineated. For other methods, only the KDE and

Maddalena did not have any false alarms, but the human
silhouettes were not as cleanly detected. The problems faced
by other RPCA-based method will be further commented
upon in Fig. 5.

The seventh column depicts an evening scene with high
image noise and flickering illumination caused by fluores-
cent lights. The sudden change in intensity caused by the
varying illumination is not a problem for the RPCA-based
methods, as the effect of the change is entirely captured by
the low rank constraint. The KDE and Maddalena can also
handle the sudden change in illumination well, but both of
them missed the small car at the top right corner of the
image. In both the seventh and the eighth columns, our
method can also detect small camouflaged cars moving in
the carpark behind the row of roadside trees (not present in
the frame shown).

The ninth and 10th columns are from the CDnet data set.
The ninth column depicts a thermal sequence captured by a
far-infrared camera. Typical thermal artifacts exist, such as
heat emission which results in an apparent target that is
larger than its true size. As can be seen, our method
performed best with little missed detection along the
foreground boundary. DECOLOR and Zivkovic achieved
complete foreground detection, but with much more false
alarm and distinct oversmoothing. Lastly, the 10th column
depicts a canoe scene with mild wave motion and rowing
action. DECOLOR and PCP achieved a rather low recall; a
likely explanation is that the sparse outlier assumption is
violated here with the large foreground object size. In con-
trast, via adaptively setting the regularizing parameter, our
method can handle object of large size, obtaining much
more complete foreground detection.

From the above, the qualitative conclusions that we can
draw are: (1) despite the claim made in [2] that the best
performing algorithms can handle dynamic background,
this is not true when the background motion is large
enough, as can be seen from some of the cases tested here,
and also by the quantitative results obtained on the CDnet
data set (see Table 2 with its rapidly decreasing F-meas-
ures); (2) While KDE and Maddalena can handle dynamic
background well, they fail in some cases, and the fore-
ground objects returned are often incorrect in shape,
incomplete, or missed altogether (especially if the objects
are small); (3) RPCA-based methods can handle various
background changes quite well generally; these include
illumination changes, changes caused by rain, tree and
wave motions. Our method and PCP tend to produce
cleanly delineated foreground shapes; this is typically not
the case for DECOLOR due to the MRF smoothness prior
imposed on the foreground shapes. Both PCP and
DECOLOR fail when the foreground object is too large.

Despite the general success of the RPCA-based methods,
PCP and to a lesser extent, DECOLOR have problems in set-
ting a correct regularizing parameter that can handle regions
or motions of varying scales, which is what we set out to
overcome. We now explore this point in greater depth in
Fig. 5. It can be seen that no matter how the value of � is cho-
sen, we cannot obtain a simultaneously satisfactory back-
ground and foreground for PCP. On the one hand, when � is
small (middle column), no ghost of the foreground is
detected in the recovered background but unfortunately,

Fig. 5. Recovered background and foreground (top and bottom rows

respectively). Left: our 2-pass RPCA method; middle: PCP with

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞp

; right: PCP with � ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞp

. Top right, inset:

ghostly presence left in the background.
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much clutter remains in the foreground. On the other hand,
setting a somewhat larger � (right column) has the undesir-
able effect of putting some of the genuine foreground in the
background, even when the foreground itself still contains
many false alarm.When viewed in video sequence, the effect
of a ghostly presence walking in the background when the
human is not cleanly removed is much clearer. For our
results, there is no ghost and the motion of the swaying tree
is largely retained in the background, creating a pleasing
video edit that has little artifacts.

All the results mentioned above show that the spatial
contiguity prior that we incorporate in the form of blocks
and the motion saliency measure have been quite effective
in handling the aforementioned issues. Unlike DECOLOR
which enforces the MRF constraint, our method is sensitive
to small targets and details; it does not suffer from merging
of adjacent objects nor inflation of foreground area.

We have also shown in Fig. 6 the campus scene results
produced by an one-pass RPCA (i.e., PCP), coupled with
the motion saliency step as a post-processing filter that
removes non-salient regions. Three typical values of � are
used, but all results are inferior compared to that of our
two-pass RPCA (top left of Fig. 7). The reasons for the poor
performance are twofold: first, such strategy is limited to
using a global � rather than a block-specific �; second, the
practical difficulties of optical flow estimation (e.g., over-
smoothing at motion boundaries) means that the motion
saliency values computed are not accurate enough for pre-
cise foreground separation.

Finally, many better algorithms from the CDnet evalua-
tion [13] are GMM-based, and thus require clips with clean
background for training. We now present the results

obtained by DPGMM (the best algorithm from the CDnet
evaluation at the time of publication) on sequences 6, 7, and
10, where such clean backgrounds are available. We also
take this chance to compare against those methods that esti-
mate the sparse outlier support automatically, in particular,
ReProCS [24] which also requires sequences with clean
background. As shown in Fig. 7, in sequences 6 and 7,
where the amount of training data is only 50 frames out of a
total of 100 frames, DPGMM performed not as well when
compared with our method, missing some of the human
foreground in sequence 6 (see inset for details) and a small
car entirely in sequence 7. In sequence 10, where long train-
ing data is available (more than 500 frames), DPGMM per-
formed quite well, obtaining less missed detection but more
false alarm compared to our method. Thus it seems that sig-
nificant amount of training frames must be available in
order for DPGMM to achieve its excellent best performance.
When compared to ReProCS, our method performed signifi-
cantly better in sequences 6 and 10 and slightly better in
sequence 7. These results corroborate our previous claim
that our explicit two-pass method can better handle fore-
ground detection amidst complex background motion.

4.2 Quantitative Results

4.2.1 SABS Data Set

The SABS data set comprise synthetic image sequences
divided into nine test categories, with challenging scenarios
such as gradual and sudden illumination changes, camou-
flage, dynamic background, etc. While the images are not
real (see Fig. 8), the data set allows a controlled testing of
various challenges, some of which are not available in the
CDnet data set (e.g., sudden illumination change, high noise
in dim condition, and camouflage). Out of the nine test cate-
gories, we only include the following four for comparison:
Light Switch (sudden illumination change), Noisy Night (dim
ambient lighting), dynamic background and camouflage. Other
categories are either very easy for most techniques or
peripheral to our concern here and are hence not included.

Fig. 9 shows the precision-recall charts of the perfor-
mance of different methods with varying thresholds. It is
obvious that our method significantly outperforms other
methods evaluated in [2], reaching more than 70 percent
precision at recall higher than 90 percent. It is worth point-
ing out that the dynamic background motion created in the
synthetic SABS data set is really quite small in magnitude;
otherwise, the superiority of our method in this case will be
even more conspicuous. The relatively good performance
reported in [2] is clearly not borne out by the results shown
in our preceding qualitative experiments on real sequences,
as well as the results from CDnet, with their larger and
more realistic motion. The RPCA-based methods generally

Fig. 6. Combining one-pass RPCA with motion saliency filtering. From
left to right: saliency of the human figure with brighter intensity denoting
higher saliency values; results of foreground detection, with � ¼ 0:5; 1,
and 2 respectively.

Fig. 7. Detected foreground masks of 2-pass RPCA method (left),
ReProCS (middle) and DPGMM (right) on seq.6, 7, 10 in Fig. 4.

Fig. 8. Synthetic scene of the SABS data set.
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perform better than the others; among these RPCA-based
methods, our method is the clear winner. However, at very
high recall rates (about 95 percent and above), DECOLOR
performs better than ours. This is due to the fact that the
MRF-based smoothness prior of DECOLOR ensures that, as
the threshold is varied, additional foreground points only
grow around the core foreground regions already detected.
This feature ensures that the additional points detected are
not some background clutter; it is indeed a virtue against
which we cannot prevail unless we are willing to forego the
scale-independent detection ability of our algorithm. That
is, if we accept that once beyond certain threshold, addi-
tional foreground points can only come in the blocks where
currently detected foreground regions reside, we are essen-
tially giving up on any remaining small, inconspicuous
foreground objects that are still not detected. This can read-
ily be done, if specific application needs so dictate.

4.2.2 CDnet Data Set

The second data set CDnet consists of 31 real-world videos
(including thermal sequences) totalling over 80,000 frames
and spanning six categories selected to include diverse
motion and change detection challenges (see Fig. 10). For
each category, we compare our two-pass RPCA algorithm
with the top-performing methods which have submitted
results for that category for the reason of space limit (read-
ers are referred to Goyette et al. [13] and its website for the

complete list of references and the corresponding perfor-
mance figures). The addition we made to this rather
comprehensive list includes DECOLOR and PCP. In
DECOLOR, there is an explicit alignment operation to han-
dle camera jitter; for PCP, we augment the algorithm with
the alignment step presented in Section 3.2, and refer to it
as PCP+Alignment in the following tables. For ease of com-
parison, we adhere to the definition of background set forth
in this data set when evaluating the algorithms’ perfor-
mance, even though some of these definitions might be
arguable. For instance, the accompanying shadow of a mov-
ing foreground is considered as background in the ground
truth, while our algorithm considers it as part of the fore-
ground, which means that our algorithm’s performance
will be negatively affected by this definition. Another point
to note is that the CDnet data set defines a ROI (region of
interest) for each sequence; only the pixels contained in the
ROI are counted towards the performance metric. Further-
more, the ROI usually contains only objects at the same
scale. As a result, there is no test of algorithms’ ability to
pick up foreground objects of different scales.

Table 1 shows the results of the Baseline category, which
comprises four fairly easy videos. Clearly, all algorithms
perform well, reaching a F-measure of more than 0.9.4

Table 2 shows the results of the Dynamic Background cat-
egory, comprising six videos depicting outdoor scenes
with strong background motion, two with boats on shim-
mering water, two with cars passing near a fountain, and
the last two with pedestrians, cars and trucks passing in
front of a scrub swaying under wind. Compared with
Table 1, this challenge clearly presents difficulties for all
algorithms, resulting in a drop of F-measure by about
10 percent in the top performing algorithms. It is also inter-
esting to compare the performance of PSP-MRF [26] and
DECOLOR. Both use the MRF constraint, and one would
expect that they tend to over-smooth the foreground
region, thus resulting in high recall rate. However,
DECOLOR achieved a rather low recall; a visual inspection
of the results seems to indicate that the DECOLOR

Fig. 10. Representative scenes of the six categories in CDnet data
set. From top, left to right: Baseline, Dynamic Background, Shadow,
Thermal, Intermittent Object Motion, Camera Jitter.

Fig. 9. Precision-recall charts of different methods with varying thresh-
old. first row: Dynamic Background; second row: Light Switch; third row:
Noisy Night; fourth row: Camouflage.

4. Note that for layout purposes, we abbreviate the names of the fol-
lowing methods:

Chebyshev 1 : Chebyshev probability approach
Chebyshev 2 : Chebyshev prob. with static object detection
QCHBMD : Quasi-continuous histograms based motion detection
KDE-STCD : KDE-spatio-temporal change detection
KDE-ISTF : KDE-integrated spatio-temporal features
LSS : Local-self similarity.

GAO ET AL.: BLOCK-SPARSE RPCA FOR SALIENT MOTION DETECTION 1983



framework cannot handle foreground objects with large
sizes. This echoes the findings in the preceding section,
and corroborates what we said earlier about the problem
of scale and the difficulty of setting the value of the regu-
larizing parameter �. Finally, we note that when there are
enough clean background data for training, DPGMM is
very competitive, turning in the best performance in this
category, as well as in the Thermal category later.

Table 3 shows the results of the Shadows category, which
consists of six videos (two indoor and four outdoor) exhibit-
ing shadows with different intensities and sizes. Our
method ranks ninth, the worst ranking among all categories.
However, due to the simple scene content in this data cate-
gory, the F-measure of our method is about 0.8, still better
than those of many other categories. It should be noted that
among the methods ahead of ours, Chebyshev 1 and 2 have
a specific shadow processing step. SGMM-SOD, the best
performing algorithm in this category, maintained two
background models with different learning rates, and there-
fore is better able to handle short-term phenomena, like
shadow in the background here, as well as intermittent
stops of the foreground in Table 5.

Table 4 shows the results of the Thermal category, which
comprises five videos (three outdoor and two indoor) cap-
tured by far-infrared cameras. Although the type of change
or the motion is simple, the resulting performance is still
much worse than that of the Baseline due to a variety of typi-
cal thermal artifacts, such as heat emission which results in
an apparent target that is larger than its true size, heat
stamps (e.g., bright spots left on a seat after a person gets up
and leaves), heat reflection on floors and windows, and
camouflage effects arising from a foreground target having
the same temperature as the surrounding regions. Here the
oversmoothing problem of DECOLOR is especially appar-
ent (see Fig. 4, second last column, third row).

Table 5 shows the results of the Intermittent Object Motion
category, which comprises six videos depicting objects with
stop and start motions. With continuous tracking even
when the object has stopped, our method has no problem in
handling intermittent motions. Nevertheless, we would like
to add the caveat that if the foreground object stops long
enough, then it is arguable whether one should continue to
treat this as foreground or as part of the background. We
are not able to comment on the best performing algorithm

TABLE 4
Results of the Thermal Sequences

TABLE 3
Results of the Shadow Sequences

TABLE 2
Results of the Dynamic Background Sequences

TABLE 1
Results of the Baseline Sequences
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CDPS as its authorship remains anonymous at the time
of publication.

Table 6 shows the results of the Camera Jitter category.
Due to the respective explicit alignment step, both our
method and DECOLOR perform well. Some of the other
non-RPCA based methods may also derive certain degree
of robustness to camera jitters via their stochastic non-
parametric background modeling strategy (e.g., ViBe+ and
PBAS, etc.).

We also show the detected foreground masks of the Traf-
fic and the Sidewalk sequences in Figs. 11 and 12 to depict
the effectiveness of our image alignment step in comparison
to those of DECOLOR and PCP. The Traffic sequence con-
tains the largest jitter displacement (up to about 20 pixels in
the original resolution), and the Sidewalk sequence has mild
jitter but the smallest target. See Table 8 for the jitter dis-
placements estimated in the scaled-down resolution. Both
our method and DECOLOR can handle the large pixel dis-
placement in the Traffic sequence. On the Sidewalk sequence,
neither DECOLOR nor PCP can detect the lower limbs and
the shadow of the person which only moved a few pixels in

the sequence. Furthermore, we also observe that the perfor-
mance of PCP is much more inferior to its performance over
the static camera sequences. The root of this problem lies in
that the recovered background component is not so low-
rank due to imperfection in the alignment, with its rank
value typically about two times higher than those of the
static sequences. This increase in rank could now absorb
some of the smaller, genuine foreground changes into the

TABLE 5
Results of the Intermittent Object Motion Sequences

TABLE 6
Results of the Camera Jitter Sequences

Fig. 12. Detected foreground mask of the Sidewalk sequence.

TABLE 7
Overall Results over all Categories

Fig. 11. Detected foreground mask of the Traffic sequence. The original
image frames are shown in the top row. Rows 2 to 4 depict the results of
our two-pass RPCA method, DECOLOR plus alignment, PCP plus align-
ment respectively.
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background. This is precisely where the advantage of our
adaptive weighing comes to the forth; it allows more of
these weaker changes being decomposed as foreground via
penalizing less with a smaller � value. Note that this is less
of an issue with the Traffic sequence, because while higher
rank also exists in the recovered background, the fore-
ground changes are typically of much larger magnitudes in
this sequence such that there is no question of them being
absorbed in the background.

Table 7 shows the overall ranking obtained across all six
categories. Our algorithm emerges as the overall winner by
virtue of its adaptability to various challenges, attaining
near top performances in all categories rather than being
first in particular challenges. To conclude, the quantitative
assessment further corroborates the results obtained in the
qualitative experiments: our algorithm works well under a
wide variety of scenes and significantly outperforms several
state-of-the-art techniques.

Lastly, we report on the amount of computations
incurred by our two-pass RPCA algorithm on a Fujitsu Life-
book with dual quad-core 2.5 GHz Intel processors and
8 GB RAM executing Matlab codes. Excluding the optical
flow estimation step, the average processing time on a
sequence of 100 frames with resolution 320� 240 is about
1,280 seconds. If the image alignment step is also per-
formed, the average time increases to about 1,730 seconds.

5 CONCLUSION AND FUTURE WORK

To handle the complex scenarios encountered in back-
ground subtraction work, we propose a hierarchical RPCA
process which makes little specific assumption about the
background. The two-pass RPCA process is interleaved
with a motion saliency estimation step that makes our
method yield substantially better results than conventional
RPCA. We are able to incorporate the spatial contiguity
prior in the form of blocks whose size and locations are
detected automatically, without having to resort to smooth-
ness prior such as MRF, thereby fully realizing the potential
of the low rank representation method to return scale-inde-
pendent, crisply defined foreground regions. Extensive
experiments on challenging videos and benchmark data set
demonstrate that our method outperforms various state-of-
the-art approaches and works effectively on a wide range of
complex scenarios.

APPENDIX

POINT TRACKING

Point ðxt; ytÞT can be tracked by using the flow field
wwðx; yÞ :¼ ðuðx; yÞ; vðx; yÞÞT that ðxtþ1;ytþ1ÞT ¼ ðxt; ytÞTþ
ðutðxt; ytÞ; vtðxt; ytÞÞT . Since ðxtþ1; ytþ1ÞT usually ends up

between grid points, we use bilinear interpolation to infer
the flow. In new frame, we initialize new tracks at the
points that no existing trajectories passed nearby (within
0.1 pixel unit).

We stop the tracking of a point as soon as it gets
occluded. We detect occlusions by checking that the back-
ward flow vector should point in the inverse direction as
the forward flow: wtðxt; ytÞ¼ �ŵtðxt þ ut; yt þ vtÞ, where
ŵtðx; yÞ :¼ ðûtðx; yÞ; v̂tðx; yÞÞ is the flow from frame tþ 1 to t.
If the consistency is broken, the point is either being
occluded or the flow was not correctly estimated. As small
optical flow estimation errors are inevitable, we allow the
following tolerance factor in the consistency check:
jwwðx; yÞ þ ŵwðx; yÞj2 < 0:01ðjwwðx; yÞj2 þ jŵwðx; yÞj2Þ þ 0:2.

For points on motion boundaries, the tracking may not be
stable, with the undesirable result that the tracked points
wander back and forth across the boundary. If not handled
properly, such feature points might come to be regarded as
undergoing inconsistent motion due to this drifting across
the boundary. To ameliorate this effect, we perform two
mitigating measures: First, if the tracking of a point near an
edge experiences substantial variation in its motion, we at
once stop the tracking and re-initialize a new feature track
from this frame onwards. Specifically, the conditions for
stopping the tracking are:

jruj:2 þ jrvj2 > 0:01jwwj2 þ 0:002ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@I=@xÞ2 þ ð@I=@yÞ2

q
> Td;

(

where Td is the average edge strength. Second, before the
second pass RPCA, a border five pixels is added to each
rectangular block so that no outlier pixels are missed. If
intermittent object motions are prevalent in the scenes and
it is desirable to continue regarding them as foreground
even after they have stopped for a while, the user has an
option to disregard the aforementioned stopping condition
so that stationary points are continuously tracked, which is
what we did in the Intermittent Object Motion category. Of
course, this significantly increases the computational bur-
den of the tracking process.
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